Woodcut Waves
Woodcut Ripples
Woodcut Gaussian Side
Woodcut Gaussian
Woodcut Eggcarton
Woodcut Geodesics
Hyp Balloons
Geodesic Ripples
Equirectangular Map
Stereographic Map
Hemisphere Map
Archimedes Map
Five Body
Geodesic Circles
Double Pendulum
Norton Dome
Physical Billiards
Geodesic Billiards
Gravity Star
Geodesics Graphing Calc
Geodesics Cosr
Geodesic Paraboloid
Geodesics Gaussian
Geodesics Sinusoid
Bh Slice
Gravity Curvature Sphere
Tangent to Graph
The Double Slit Experiment
Particle in a Box
Quantum Elliptical Billiards
Diffraction through Periodic Potential
Exp Branch Cut
Zn Branch Cut
Complex Exponential Product
Complex Modulus
Iterated Integral Variable Bounds
Iterated Integral Polar
Iterated Integral Cartesian
Sudanese Mobius
Kleinbottle Fig8
Boys Surface
Complex Spiral
Tangent Plane
Black Hole
Lorenz Attractor
Partial Derivatives
Frenet Frame
Parametric Curve Tangent
Exp Taylor Series
Parametric Plane
Parametric Curve Animation
Parametric Curve
Parametric Surface Animation
Cplx Modulus Plot
Parametric Surfaces
Morse Function
Contour Slicing
Parameterized Line
Cross Product
Vector Components
Schrodinger Snowflake
Wave Eqn Snowflake
Wave String
Orbital Density
Sphere and Cylinder Deform
Orbital Isosurface
Sphere and Cylinder
Torus Eigenfunctions
Spherical Harmonics
Cylinder Eigenfunctions
Hydrogen 2d Slice
Circular Drum
Square Drum
Cylindrical Shells
Area Function
Ftc Plotter
Volume by Slicing
Genus2 Teichmuller
Schwarzschild Checkerboard
Projective Triangle Group
Right Angled Hexagons
Right Angled Pentagons
Newton Fractal
Spherical Dinosaur
Newtons Method
Gaussian Geodesics
Vector Field 2D
Slope Field
Riemann Sum 2D
Riemann Sum Sequence
Hyperbolic Collisions
Schwarzschild Geodesics
A closed timelike curve in the Godel universe
Riemann Sum
Secant Line
Three Body
Spring Cube
This program simulates a 3 dimensional network of coupled harmonic oscillators, to model a deformable solid such as jello.
A cloth simulation built from a 2D grid of coupled harmonic oscillators.
Integral Curves
Curvature & Torsion
Space curves are determined uniquely up to rigid motion by their curvature and torsion. This program computes a representative curve from these invariants.
Knot Complements
Visualizing the complement the regular neighborhood of knots in the 3-sphere.
Hopf Tori
Preimages of closed curves under the Hopf Map
Dynamics & Strange Attractors
The Shadow of a Cube
Curvature of Surfaces
The Fundamental Group of the Torus
Stereographic Nullhomotopy
Torus Geodesics
Pt Sextic Marble
Pt Negroni
Pt Gin Bottle
Schrodinger Capture
Schrodinger Double Slit
Wave Eqn Flash
Wave Eqn Refraction
Wave Eqn Double Slit
Whitehead S3
Rectangular Peg
Gravity Power Law
Nil Geodesic Spheres
Sol Geodesic Spheres
Sol Geodesics
Hopf Tori
Square Torus
Complex Zn
Geodesics Cylinder
Nil Geodesics Earth Animate
Nil Geodesics Earth
Complex Exp
Seifert Fibration
Punctured Disk Geometrization
Geodesics Torus
Fourier Series
Hopf Complement
Hopf Fibration
H2e Tiling
H2e Hyperbolic Planes
H2e Earth Moon
H2e Balloons
Euclidean R2xS1
Euclidean Hopf Complement
Euclidean Balloons
Euclidean 3torus
Gaussian Raytrace
Fourier Partial Sum
Fourier Wave 1d
Nil Geodesics
Geodesics Sphere
Geodesics Sinusoid
Geodesics Gaussian
Epicycle Mars
Icosahedron Axes
Hopf Link R3
Whitehead Link R3
Square Orbit
Why is it not showing up?