Gaul' Linking Number
(I) Let M, N be manifolds immersed (but disjoint) In \mathbb{R}^{m+n+1}. Want an invariant of M, N upto homotoples where they do not intersect each other (we do allow M or N to pass thru themselves during the homotopy though:

$$
\infty=
$$

What is this information?
We can take maps $K: M \rightarrow \mathbb{R}^{P} \quad L: N \rightarrow \mathbb{R}^{P}$
Together these make a map

$$
K \times L: M \times N \rightarrow \mathbb{R}^{p} \times \mathbb{R}^{p}
$$

But since the two manifolds never intersect in \mathbb{R}^{P} we never have $K(x)=L(y)$ so $K \times L$ avoids the diagonal

$$
\Delta=\left\{(x, x) \mid x \in \mathbb{R}^{p}\right\}
$$

Any homotopy where they remain disjom t induces a homotopy

$$
M \times N \longrightarrow \mathbb{R}^{P} \times \mathbb{R}^{P}, \Delta
$$

Thus, the space we are interested in is the set of homotopy classes of maps

$$
\left[M \times N, \mathbb{R}^{P} \times \mathbb{R}^{P}, \Delta\right]
$$

And the linking invariant of embeddings K, L is the class $[K \times L]$ in this space.
(II) What is this space?

Given $\mathbb{R}^{p} \times \mathbb{R}^{p} \cdot \Delta=\{(u, v)\}$ we can change coordinates to $(v, u-v)$

This is a homeomorphism $\mathbb{R}^{P} \times \mathbb{R}^{p}, \Delta \cong \mathbb{R}^{P} \times\left(\mathbb{R}^{p}-0\right)$ And \mathbb{R}^{P} is contractible so projecting it off is a btry equivalece.
Now $\mathbb{R}^{P}, 0$ deformation retracts to \mathbb{S}^{p-1} via

$$
\pi: x|\mapsto x /|x|
$$

And the composition is a homotopy equivalence

$$
\begin{gathered}
\mathbb{R}^{p} \times \mathbb{R}^{p}, \Delta \rightarrow \mathbb{S}^{p-1}{ }_{n}^{m+n} \\
(u, v) \longrightarrow(v, u-v) \rightarrow u-v \rightarrow \frac{u-v}{|u-v|}
\end{gathered}
$$

This homotopy equaderce induces a bijection

$$
\left[M \times N, \mathbb{R}^{p} \times \mathbb{R}^{p}, \Delta\right] \xrightarrow{\sim}\left[M \times N, \mathbb{S}^{m+n}\right]
$$

But this is now the space of homotopy classes of maps of an $m+n$-manifold ($M \times v$) into the m+u-spheve $\left[M \times N, S^{m+n}\right]$, which are completely classified by degree:
Thu (Hopf): If X^{N} is an orretable N-manifold then two maps $f_{1} g: X \rightarrow \mathbb{S}^{N}$ are homotopic if and only if $\operatorname{deg} f=\operatorname{deg} g$.

Thus; $\left[M \times N, \mathbb{S}^{m \times n}\right]$ is in bijective comesponderce with \mathbb{Z}
(III) The Degree of A Map.

Degree is captured by the top homology classes of the manifolds involved: If X, Y are N manifolds and $f: X \rightarrow Y$ then f induces a map $f_{*}: H_{0}(X, \mathbb{Z}) \rightarrow H_{0}(Y, \mathbb{Z})$ and in top dimension N, each of $H_{N}(x), H_{N}(y)$ are One dimensional, generated by a choice of fundamental Class $[x],[y]$:

$$
H_{N}(X, \mathbb{Z})=\mathbb{Z} \cdot[X] \quad H_{N}(Y, \mathbb{Z})=\mathbb{Z} \cdot[Y]
$$

The induced map f_{*} then is identified with an endomorphism of \mathbb{Z} : this is just multiplication by a number, which we call $\operatorname{deg}(f) \in \mathbb{Z}$:

$$
\begin{gathered}
f_{*}: H_{N}(x, \mathbb{Z}) \rightarrow H_{N}(y, \mathbb{Z}) \\
{[x] \longmapsto \operatorname{deg}(f)[y]}
\end{gathered}
$$

* The Linking Number as Degree:

Putting all of this together, we have a precise description of the invariant of $m ; n$-manifolds in \mathbb{R}^{m+n+1} up to non-intersecting homotopy: Given $k: M \rightarrow \mathbb{R}^{p}$ and $L: N \rightarrow \mathbb{R}^{p}$

$$
\begin{array}{r}
\operatorname{Link}(k, L):=\operatorname{deg}\left((x, y) \stackrel{f}{\leftrightarrows} \frac{L(x)-k(y)}{|L(x)-k(y)|}\right) \\
\cdots \quad!
\end{array}
$$

(6) (9) 00 (93 (3)
(IV) Accessing this number via Cohomology

General theory gives us the existence of degree, but does not provide an accessible way to compute it: we need to first compute the application of f_{*} on $[n \times N]$ (probably not bad) but then find a way to write $f_{*}[M \times N]$ in terms of our chosen generator [$\left.\mathbb{S}^{\text {min }}\right]$

$$
f_{*}[M \times N]=\left[\mathbb{S}^{m \times N}\right]+\left[\mathbb{S}^{m \times n}\right]+\cdots+\left[\mathbb{S}^{m \times n}\right] \quad \text { (the looks hard!) }
$$

To help, we turn to cohomology:

Coho classes novae mans $H_{n} \rightarrow \mathbb{Z}$ Since everything is I-Dim

Shod nonzero o whomolosy class induces

$$
\text { 18: } H_{n} \rightarrow \mathbb{Z}
$$

(IV) The Smooth World.

Actually computing $H_{m+n}(M \times N) \xrightarrow{f_{*}} H_{m+n}\left(\mathbb{B}^{m+n}\right) \xrightarrow{\alpha} \mathbb{Z}$
$[M \times N] \longmapsto \operatorname{deg}(f)$
Requires choosing some type of cohomology that we actually know how to work with:
When f is smooth we can use de Ram cohomolosy for the actual computation:
smooth Chains/ In singular homology of a smooth unfld every class has a (smooth clean) representative.
deRham's theorem
de Sham conomology of a smooth manifold is isomorphic to is singular cohomology.
As linear maps on homology, an dement $[\alpha] \in H^{n}$ acts on a smooth chain $[c] \in \mathcal{H}_{n}$ by

$$
[\alpha]([c]):=\int_{C} \alpha
$$

Thus, to set up an isomorphisms $H_{n}\left(\mathbb{S}^{n+1} ; \mathbb{R}\right) \rightarrow \mathbb{R}$ we need only select a cohomolosy class $[\alpha]$ with

$$
\int_{\mathbb{S}^{n+m}} \alpha=1
$$

There are many such forms ($\frac{1}{v_{01}\left(S^{n+4}\right)}$ vol works, for vol the volume form of any Riemannim metric) but of carse they are all cohomobgous.

The Abstract Computation
For specificity let \mathcal{Z} be anvolume form on \mathbb{S}^{n+m} and define $V=\int_{\mathbb{S}^{n+m}} \tilde{\alpha}$. Then define $\alpha=\frac{1}{\bar{x}} \tilde{\alpha}$.

Now if $K: M \rightarrow \mathbb{R}^{n+n+1}$ and $L: N \rightarrow \mathbb{R}^{m+n+1}$ are disjoint embeddings of M, N; form the map

$$
\begin{aligned}
& f: M \times N \rightarrow \Phi^{m+u} \\
& (s, t) \longmapsto \frac{K(s)-L(t)}{|K(s)-L(t)|}
\end{aligned}
$$

If $[M \times N]$ is a choice of fundamental class (orientation) for $M \times N$, then as smooth chars,

$$
f_{*}([\mu \times N])=[f(\mu \times N)] \in H_{m+n}\left(S^{m+n}\right)
$$

And, as $H_{m+n}\left(\mathbb{S}^{n+m}\right)=\mathbb{Z} \cdot\left[\mathbb{S}^{n+n}\right]$ for a choice of fundamental class for $\$^{n+m}$, we know abstractly

$$
[f(M \times N)]=\left[\mathbb{S}^{m+n}\right]+\cdots+\left[\mathbb{S}^{m+n}\right]=\operatorname{deg}(f)\left[\mathbb{S}^{n+n}\right]
$$

Thus, integration against α yeilds

$$
\begin{aligned}
\int_{f(M \times N)} \alpha & =\int_{\mathbb{S}^{m+n} L \cdots L \mathbb{S}^{m+n}} \alpha=\int_{\mathbb{S}^{n+n}} \alpha+\cdots+\int_{\mathbb{S}^{n+n}} \alpha \\
& =\operatorname{deg}(f) \int_{\mathbb{S}^{m+n}} \alpha=\operatorname{deg}(f)=\operatorname{Link}(k, L)
\end{aligned}
$$

Working in \mathbb{R}^{n+m+1}
So we've laid out a complete \& viable computation strategy for $\operatorname{Link}(K, L)$, and the next step is to put this into practice. With care, the integral $\int_{f(M \times N)} \alpha$ canbe made explicitly Computable; and by the $f\left(M_{\times N}\right)$ ie abstract computation, we know this evaluates to the linking number.
The first practical difficulty is that α is defined on \mathbb{S}^{m+n} and writing things down in COordinates will requive multiple Charts and make the integral all lat impossible to practically evaluate. One solution is to consider instead the $\operatorname{map} F: M \times N \rightarrow \mathbb{R}^{m+n+1}, 0$ given by

$$
F(s, t)=K(s)-L(t)
$$

If $\pi=\mathbb{R}^{m+n+1} \rightarrow \mathbb{S}^{m+n}$ is the projection $x|\rightarrow x||x|$, then

$$
\begin{gathered}
f=\pi F \text {, and } \\
\int_{f(M \times N)} \alpha=\int_{\pi F(M \times N)} \alpha=\int_{F(M \times N)} \pi^{*} \alpha
\end{gathered}
$$

Now $\pi^{*} \alpha$ is an $m+n$ form on $\mathbb{R}^{n+m+1} 0$ Where we can use a single coordinate chert

$$
\left(\begin{array}{lll}
x_{1} & \ldots & x_{n+m+1}
\end{array}\right)
$$

avoiding coordinate - concems on the codomalu. of course, the next obstacle isto compute $\pi^{*} \alpha$ explicitly.

Computing $\pi^{*} \alpha$
Given a volume form α of total wlume 1 on $\$^{m+n}$ w wish to compute ts pullback in standard coordinates os \mathbb{R}^{n+n+1} Unfortunately this is self difficult as the whole trouble began with writing down α explicitly!
Instead-remem beer α itself has no special importance, Only its cohomolosy class. Similarly $\pi^{*} \alpha$ is not important, any representative of $\left[\pi^{*} \alpha\right] \in H^{m+n}\left(\mathbb{R}^{m+n+1}, 0\right)$ is equally good.
What are the abstract properties of $\left[\pi^{*} \times\right]$?

1) It generates $H^{n+m}\left(\mathbb{R}^{m+n} \div 0\right)$
2) It evaluates to 1 on $\mathbb{S}^{m+n} \subseteq \mathbb{R}^{m+n+1}$

Thus the real question is how do we produce a form $w \in \Lambda^{n+m}\left(\mathbb{R}^{n+m+1}(0)\right.$ so that $[W]$ has these properties?

New Goal: Construct w such that

- $w \in \Lambda^{n+m}\left(\mathbb{R}^{n+n+1} 10\right)$
- w is closed
- w is not exact ζ in portal. $\int_{\mathbb{S}^{n+m}} \omega=1$

Conditions on $[\omega]=\left[\pi^{*} x\right]$
Here we look to turn the set of conditions on w above into a set of reasonable ansatzes, and then solve for a w with these properties.
(i) w is a "codimension-1" form since we pulled back a volume form along $\mathbb{R}^{n+m+1} \rightarrow \mathbb{S}^{n+n}$. Thus its reasonable to seel w as the hodge dual of a 1-foum $?$

$$
w=x \eta
$$

(2i) If w is to be closed, then $d w=0 \cdot \mathrm{vol}$ this puts a constraint on $\eta ; d \neq \eta=0 \cdot v o l$. Applying the hodge star once move takes this from a multiple of the volume form to a scalar fuse ton

$$
* d t \eta=0
$$

(iii) w is to be non-exact, its sufficient (by Stokes) that $\int_{B} w \neq 0$. An idea is to use a one-form η whose Kernels fit together ito con centric spheres. Then, on any spheve level set, $t i n$ is a multiple of the volume form of the sphere, so has nonzero integral: This implies

$$
\eta=d \rho \text { for } \rho=\rho(r) \quad r=\sqrt{x_{1}^{2}+\cdots}
$$

Solving for w
We have managed to translate the abstract requirements on w to sufficient concrete constraints:
(1) $w=t \eta$ for $r \in \Lambda^{1}$
(2) $x d x \eta=0$
(3)

$$
\begin{aligned}
\eta=d \rho \text { for } \rho & =\rho(r) \\
r & =\sqrt{x_{1}^{2}+\cdots x_{1}^{2}}
\end{aligned}
$$

Pulling together (2) and (3) shows

$$
t d t d \rho=0
$$

But $(x d)^{2}=\Delta$ is the Laplacian on functions

$$
\therefore \Rightarrow \Delta \rho=0 \text { on } \mathbb{R}^{m+n+1} \cdot 0
$$

This is the right condition! If $w=t d \rho$ for $\rho=\rho(r)$ then:

$$
\begin{aligned}
d \rho & =\rho^{\prime}(r) d r=\rho^{\prime}(r) \frac{1}{2 \sqrt{x_{1}^{2}+\cdots}} d\left(x_{1}^{2}+\cdots\right) \\
& =\rho^{\prime}(r) \frac{1}{r} \sum x_{i} d x_{i} \\
\Rightarrow w & =A d \rho=A\left(\frac{\rho^{\prime}(r)}{r} \sum x_{i} d x_{i}\right)=\rho^{\prime}(r) \\
r & \sum_{i} x_{i} A d x_{i}
\end{aligned}
$$

Thus, restricted to B^{n+m} (where $r=1$) we have

$$
\left.w\right|_{\mathbb{S}^{n+m}}=\frac{\rho^{\prime}(1)}{1} \sum_{i} x_{i} t d x_{i}
$$

So $\int_{\mathbb{S}^{n+m}} w=\int_{\mathbb{S}^{n+m}} \rho^{\prime}(1) \sum_{i} x_{i} t d x_{i}$
Thus, we need to compute $\int \sum x_{i} \not t d x_{i}$ on \mathbb{S}^{n+m}.
Note this form extends smoothy (by same formula) to all of \mathbb{R}^{n+m+1} : and, on \mathbb{R}^{n+m+1} its derivative is cary to compute (note this is Nor the denvative of w, but a different simosto extension of $w H_{\text {guin }}$). We use the definition of the Hodge Star explaity, where If β is a nonzero 1 -form then $\beta \wedge \boldsymbol{\beta} \boldsymbol{\beta}=$ vol is the volume form:

$$
d\left(\sum_{i} x_{i} * d x_{i}\right)=\sum_{i} d\left(x_{i} * d x_{i}\right)=\sum d x_{i} \wedge * d x_{i}+x_{i} d\left(* d x_{i}\right)
$$

and as $d d x_{i}= \pm d x_{1} \wedge d x_{i} \wedge \cdots d x_{n+m n n}$ is the wedge of closed forms, $x d x_{i}$ is closed so $d\left(x d x_{i}\right)=0$

$$
\begin{aligned}
\therefore d\left(\sum_{i} x_{i} d x_{i}\right) & =\sum d x_{i} \wedge \neq d x_{i} \\
& =\sum v_{0} \mid=(n+m+1) \cdot v_{0} l
\end{aligned}
$$

Thus;

$$
\int_{\mathbb{S}^{n+m}} w=\left.\int_{\mathbb{S}^{m+n}} w\right|_{\mathbb{S}^{+n+m}}=\int_{\mathbb{S}^{n+m}} D^{\prime}(1) \sum x_{i} t d i=\rho^{\prime}(1) \int_{\partial B^{n+m+1}} \sum x_{i} t d x_{i}
$$

$$
\begin{array}{r}
\stackrel{\text { Stoke c }}{=} \begin{array}{r}
\text { pill } \\
\mathbb{B}^{n+m+1}
\end{array} d\left(\sum x_{i} t d x_{i}\right)=P^{\prime}(1) \int_{B^{n+n+1}}(n+m+1)_{01}=\rho^{\prime}(1)(\underbrace{(n+m+1) \operatorname{Vol}\left(B^{n+m+1}\right)}) \\
=\operatorname{Vol}\left(\mathbb{S}^{n+m}\right)
\end{array}
$$

Putting this all together we get:
Thin If ρ is harmonic, va diddly symmetric on \mathbb{R}^{n+m-1} and $\rho^{\prime}(1) \neq 0$ then $\omega=t d \rho$ generates $H^{m+n}\left(\mathbb{R}^{n+m+1}, 0\right)$.
Furthermore, if $\rho^{\prime}(1)=1 / \operatorname{vol}\left(\mathbb{S}^{n+m}\right)$ then $[W]$ sends $\left[\$^{n+m}\right]$ to 1 .

Thus, all we need is to produce explicit harmonic functions on $\mathbb{R} \cdot O$: wive reduced ar abstract differential equation

$$
\pi^{*} \text { vol }=w
$$

To an explact ODE for $p(r)$:
The solutions in each diversion are woll-known:

$$
\begin{array}{cc}
\mathbb{R}^{2}: \rho(r)=\ln (r) & \frac{1}{2 \pi} \ln r \\
\mathbb{R}^{3}: \rho(r)=\frac{-1}{r} & \frac{-1}{4 \pi} \frac{1}{r} \\
\vdots & \frac{-1}{\text { vol }\left(\Phi^{n-1}\right)} \frac{1}{(n-2) r^{n-2}}
\end{array}
$$

In each of these standudized normalizations have $\rho^{\prime}(1)=1$ so our purposes require we divide each by $\frac{1}{\text { vol }}$

This gives an expliat form in coordinates since

$$
\begin{aligned}
& w=A d \rho=\frac{\rho^{\prime}(r)}{r} \sum x_{i} t d x_{i} \\
& \mathbb{R}^{2}: \quad w=\frac{1}{2 \pi}\left(\frac{d}{d r} \ln r\right) \frac{1}{r}(x \nRightarrow d x+y \nRightarrow d y) \\
& =\frac{1}{2 \pi} \frac{1}{r^{2}}(x+d x+y d d y) \frac{1}{2 \pi} \frac{x A d x+y t d y}{x^{2}+y^{2}} \\
& =\frac{1}{2 \pi} \frac{x d y-y d x}{x^{2}+y^{2}} \\
& \mathbb{R}^{3}: \quad W=\frac{1}{4 \pi}\left(\frac{d}{d v} \frac{-1}{r}\right) \frac{1}{r}(x * d x+y * d y+z * d z) \\
& =\frac{1}{4 \pi} \frac{1}{r^{3}}(x \nRightarrow d x+y \ngtr d y+z \Rightarrow d z) \\
& =\frac{1}{4 \pi} \frac{1}{\left(x^{2}+y^{2}+z^{2}\right)^{3 / 2}}(x d y \wedge d z-y d x \wedge d z+z d x \wedge d y)
\end{aligned}
$$

What can we say expliatly now?
$\ln \mathbb{R}^{2}$ If $n+m+1=2$ then only option is for one of our manifolds to be O dim and ore to be $1-d i m$.
\rightarrow Only connected, compact 0 -mid is a point $\{0\}$ \rightarrow Only connected compact 1- mAid is a arak $\$^{\prime}$
\Rightarrow we are looking at

$$
\begin{aligned}
& K:\{0\} \rightarrow \mathbb{R}^{2} \\
& L: \mathbb{S}^{1} \rightarrow \mathbb{R}^{2}
\end{aligned}
$$

Call $K(\cdot)=a=\left(a_{x} a_{y}\right)$, and write

$$
L(t)=(x \mid t), y(t))
$$

Then pulling back $w=\frac{1}{2 \pi} \frac{x d y-y d x}{x^{2}+y^{2}}$
under $t \mapsto L(t)-K(\cdot)=\left(x(t)-a_{x}, y(t)-a_{y}\right)$ gives

$$
\begin{aligned}
& \frac{1}{2 \pi} \frac{\left(x(t)-a_{x}\right) d\left(y(t)-a_{y}\right)-\left(y(t)-a_{y}\right) d\left(x(t)-a_{x}\right)}{\left(x(t)-a_{x}\right)^{2}+\left(y(t)-a_{y}\right)^{2}} \\
& =\frac{1}{2 \pi} \frac{\left(x(t)-a_{x}\right) y^{\prime}(t) d t-\left(y(t)-a_{y}\right) x^{\prime}(t) d t}{\left(x(t)-a_{x}\right)^{2}+\left(y(t)-a_{y}\right)^{2}} \\
& =\frac{1}{2 \pi} \frac{\left(x(t)-a_{x}, y(t)-a_{y}\right) \cdot\left(y^{\prime}(t),-x^{\prime}(t)\right) d t}{\left(x(t)-a_{x}\right)^{2}+\left(y(t)-a_{y}\right)^{2}}
\end{aligned}
$$

Let $\mathbb{R}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be the "wotote by $i^{\prime \prime}$ bap

$$
(x, y) \mapsto(y,-x)
$$

Then this is

$$
\frac{1}{2 \pi} \frac{(L(t)-a) \cdot R\left(L^{\prime}(t)\right) d t}{|L(t)-a|^{2}}
$$

And the Linking Number of " L " with " a " is

$$
L k(\vec{a}, L)=\frac{1}{2 \pi} \int_{\mathbb{S}^{\prime}} \frac{(L(t)-a) \cdot R\left(L^{\prime}(t)\right)}{|L(t)-a|^{2}} d t
$$

Whats the Next Nontrivial Case: in $\mathbb{R}^{3}: n+m+1=3$ so ether
(1) $n=m=1$, both are circles, or
(2) $n=2 m=0$ so one is a compact surface and ore is a point
(will do (1) first! This is Gauss').

Pull back $\omega=\frac{1}{4 \pi} \frac{1}{r^{3}}(x * d x+y * d y+z * d z)$
Under the map $\mathbb{R}^{3} \times \mathbb{R}^{3}, \Delta \rightarrow \mathbb{R}^{3}, 0$
(I) $\frac{1}{r^{3}}=\frac{1}{|L-K|^{3}} \quad\left(P_{L}, P_{k}\right) \mapsto\left(P_{L}-P_{k}\right)$
(II)

$$
\begin{aligned}
& x \star d x=x d y \wedge d z \\
& =\left(x_{l}-x_{k}\right) d\left(y_{L}-y_{k}\right) \wedge d\left(z_{L}-z_{k}\right) \\
& =\left(d y_{L}-d y_{k}\right) \wedge\left(d z_{L}-d z_{K}\right) \\
& =d y_{L} \wedge d z_{L}-d y_{L} \wedge d z_{k}-d y_{k} \wedge d z_{L}+d y_{k} \wedge d z_{k} \\
& =\left(d y_{L} \wedge d z_{L}+d y_{k} \wedge d z_{k}\right)-\left(d y_{L} \wedge d z_{k}+d y_{k} \wedge d z_{L}\right) \\
& =\underbrace{\left(d y_{L} \wedge d z_{L}+d y_{k} \wedge d z_{K}\right.}_{\text {This will be }=0})-(\underbrace{\left.d y_{L} \wedge d z_{K}-d z_{L} \wedge d y_{k}\right)}_{\text {This is part }} \\
& \text { on } T^{2} \rightarrow \mathbb{R}^{2}, \Delta \mathrm{~b} / \mathrm{c} \\
& d y_{l} \wedge d z_{l}=y_{l}^{\prime}(s) z_{L}^{\prime}(s) \underset{=0}{d s n d s} \\
& \text { This is part } \\
& \text { of cross product: } \\
& \text { le crested area } \\
& \text { patch of T? }
\end{aligned}
$$

To Simplify this mess...

* Somehow need to use that my surface
$T^{2} \rightarrow \mathbb{R}^{3} \times \mathbb{R}^{3}, \Delta$ always has tangent planes
 and anything u/ 2 form "in a single \mathbb{R}^{311} will evaluate to O on ow map.
(II)

$$
\begin{aligned}
y t d y & =y d z \wedge d x \\
& =\left(y_{L}-y_{k}\right) \underbrace{d\left(z_{L}-z_{k}\right) \wedge d\left(x_{L}-x_{k}\right)} \\
& =\left(d z_{L}-d z_{k}\right) \wedge\left(d x_{L}-d x_{k}\right) \\
& =d z_{L} \wedge d x_{L}-d z_{L} \wedge d x_{k}-d z_{k} \wedge d x_{L}+d z_{k^{\prime}} \wedge d x_{k} \\
& =\left(d z_{L} \wedge d x_{L}+d z_{k} \wedge d x_{k}\right)-\left(d z_{L} \wedge d x_{k}+d z_{k} \wedge d x_{L}\right)
\end{aligned}
$$

(II)

$$
\begin{aligned}
z A d z & =z d x \wedge d y \\
& =\left(z_{L}-z_{k}\right) d \underbrace{d\left(x_{L}-x_{k}\right) \wedge d\left(y_{L}-y_{k}\right)} \\
& =\left(d x_{L}-d x_{k}\right) \wedge\left(d y_{L}-d y_{k}\right) \\
& =d x_{L} \wedge d y_{L}-d x_{L} \wedge d y_{k}-d x_{k^{\prime}} \wedge d y_{L}+d x_{k} \wedge d y_{k} \\
& =\left(d x_{L} \wedge d y_{L}+d x_{k} \wedge d y_{k}\right)-\left(d x_{L} \wedge d y_{k}+d x_{k} \wedge d y_{L}\right)
\end{aligned}
$$

Potting all these terms to gether we have 3 of the "first lend" mus 3 of the "second land"

$$
\begin{aligned}
& =\left(x_{L}-x_{k}\right)\left(d y_{L} \wedge d z_{L}+d y_{k} \wedge d z_{k}\right)-\left(x_{L}-x_{K}\right)\left(d y_{L} \wedge d z_{k}+d y_{k} \wedge d z_{L}\right) \\
& +\left(y_{L}-y_{k}\right)\left(d z_{L} \wedge d x_{L}+d z_{k} \wedge d x_{k}\right)- \\
& +\underbrace{\left(z_{L}-z_{k}\right)\left(d x_{L} \wedge d y_{L}+d x_{k} \wedge d y_{k}\right)}_{\text {First kind }}-\underbrace{\left(z_{L}-z_{k}\right)\left(d z_{L} \wedge d x_{k}+d z_{k} \wedge d x_{L}\right)}_{\text {Second kind }}
\end{aligned}
$$

The FIRST KIND will all be zero. T They all endup 4 weill dead wI these later. $d s a d s=00 \quad d t \wedge d t=0 .$.

The second kIND: we switch around orders to get a convention: "L before k"

$$
\begin{aligned}
= & -\left(x_{L}-x_{k}\right)\left(d y_{L} \wedge d z_{k}-d z_{L} \wedge d y_{k}\right) \\
& +\left(y_{L}-y_{k}\right)\left(d x_{L} \wedge d z_{k}-d z_{L} \wedge d x_{k}\right) \\
& -\left(z_{L}-z_{k}\right)\left(d x_{L} \wedge d y_{k}-d y_{L} \wedge d x_{k}\right)
\end{aligned}
$$

To get rid of minus signs out front, absorb into cooks

$$
\begin{aligned}
= & \left(x_{k}-x_{L}\right)\left(d y_{L} \wedge d z_{k}-d z_{L} \wedge d y_{k}\right) \\
& -\left(y_{k}-y_{L}\right)\left(d x_{L} \wedge d z_{k}-d z_{L} \wedge d x_{k}\right) \\
& +\left(z_{k}-z_{L}\right)\left(d x_{L} \wedge d y_{k}-d y_{L} \wedge d x_{k}\right)
\end{aligned}
$$

Thus, evaluating the homolosy class $K \times L: \mathbb{S}^{\prime} \times \mathbb{S}^{\prime} \rightarrow \mathbb{R}^{3} \times \mathbb{R}^{?} \cdot \mathrm{y}$ against the generator of $H^{2}\left(\mathbb{R}^{3} \times \mathbb{R}^{3}, \Delta\right)$ glues

$$
\left.\frac{1}{4 \pi} \iint_{K\left(\mathbb{S}^{\prime}\right) \times L\left(\mathbb{S}^{\prime}\right)} \frac{\left(x_{k}-x_{l}\right)\left(d y_{\imath} \wedge d z_{k}-d z_{L} \wedge d y_{k}\right)-\left(y_{k}-y_{l}\right)\left(d x_{L} \wedge d z_{k}-d z_{L} \Delta d x_{k}\right)+\left(z_{k}-z_{L}\right)\left(d x_{l} \wedge d y_{k}-d y_{L} \wedge d x_{k}\right)}{\left|\left(x_{L}-x_{k}\right)^{2}+\left(y_{l}-y_{k}\right)^{2}+\left(z_{l}-z_{k}\right)^{2}\right|^{3 / 2}}\right)
$$

Almost there (sheesh!!)
Now we just need to pull back along $K \times L$ to get an integral on $S^{\prime} \times S^{\prime}$
If s is the coordinate on the first circle and t is the cord an the second, then the length forms are $d s, d t$ and a choice of area form on the tors $T^{2}=\$^{\prime} \times \Phi^{\prime}$ is

$$
x=d s \wedge d t
$$

Along $(s, t) \mapsto K(s)-L(t)=\left(\begin{array}{l}x_{u}(s)-x_{c}(t) \\ y_{u}(s)-y_{l}(t) \\ z_{k}(s)-z_{l}(t)\end{array}\right)$
each of the bars one forms pulls bach as

$$
(k-L)^{*} d x_{k}=d\left(x_{k}(s)\right)=x_{k}^{\prime}(s) d s
$$ etc...

Thus, pulling back the numerator gives

$$
\begin{aligned}
& =\left(x_{k}-x_{c}\right)\left(y_{c}^{\prime} z_{k}^{\prime}-z_{l}^{\prime} y_{n}^{\prime}\right)-\left(y_{n}-y_{c}\right)\left(x_{l}^{\prime} z_{n}^{\prime}-z_{l}^{\prime} x_{n}^{\prime}\right)+\left(z_{n}-z_{c}\right)\left(x_{l}^{\prime} y_{n}^{\prime}-y_{l}^{\prime} x_{n}^{\prime}\right) d \text { wow } \\
& =\left(\begin{array}{c}
x_{k}-x_{L} \\
y_{k}-y_{L} \\
z_{k}-z_{L}
\end{array}\right) \cdot\left(\left(x_{L}^{\prime}, y_{L}^{\prime}, z_{L}^{\prime}\right) \times\left(x_{k}^{\prime} y_{k}^{\prime} z_{k}^{\prime}\right)\right) d s \wedge d t
\end{aligned}
$$

This is

$$
(K(s)-L(t)) \cdot\left(L^{\prime}(t) \times K^{\prime}(s)\right) d s \wedge d t \quad!!e^{\text {oncs! }}
$$

Thus all tagethes on $\mathbb{S}^{\prime} \times \mathbb{S}^{\prime}$ we have

$$
\operatorname{Lnk}(k, L)=\frac{1}{4 \pi} \int_{\mathbb{S}^{\prime} \times s^{\prime}} \frac{(k(s)-L(t)) \cdot\left(L^{\prime}(t) \times k^{\prime}(s)\right)}{|L(t)-k(s)|^{3}} d s \wedge d t
$$

Finally, on the parduct manifold $\$ \$^{\prime} \$$ with voluse form spit as a product we apply Abbins:
$\operatorname{Link}\left(K_{1} L\right)=\frac{1}{4 \pi} \int_{\mathbb{S}^{\prime}} \int_{\mathbb{S}^{\prime}}^{(k(s)-L(t)) \cdot\left(L^{\prime}(t) \times k^{\prime}(s)\right)} \underset{|L(t)-k(s)|^{3}}{ } d s d t$

Tforsurface linhing wil pont \vec{a} : integal is siminao

$$
\left.=\frac{1}{4 \pi} \int_{\Sigma} \frac{(k \mid p)-\vec{a} \mid}{|k(p)-\vec{a}|^{3}} \cdot K^{*} d A<K_{s} \times k_{t} \right\rvert\, d s d t
$$

