Symmetric Spaces for Graph Embeddings: A Finsler-Riemannian Approach
We use curved spaces to more efficiently embed graphs that occur in machine learning problems.
Authors | Federico Lopez, Beatrice Pozzetti, Steve Trettel, Michael Stube, Anna Wienhard |
---|---|
Journal | Proceedings of Machine Learning Research |
Publication | |
arXiv | 2106.04941 |
Categories | Machine Learning, Geometry, Experimental |
Abstract:
Learning faithful graph representations as sets of vertex embeddings has become a fundamental intermediary step in a wide range of machine learning applications. We propose the systematic use of symmetric spaces in representation learning, a class encompassing many of the previously used embedding targets. This enables us to introduce a new method, the use of Finsler metrics integrated in a Riemannian optimization scheme, that better adapts to dissimilar structures in the graph. We develop a tool to analyze the embeddings and infer structural properties of the data sets. For implementation, we choose Siegel spaces, a versatile family of symmetric spaces. Our approach outperforms competitive baselines for graph reconstruction tasks on various synthetic and real-world datasets. We further demonstrate its applicability on two downstream tasks, recommender systems and node classification.
Read on arXiv